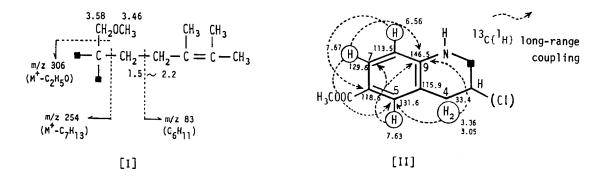
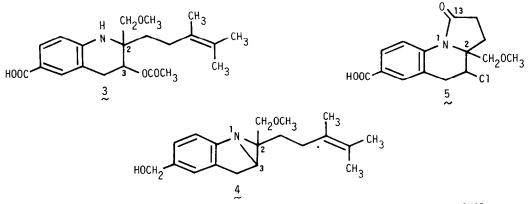

STRUCTURE OF VIRANTMYCIN, A NOVEL ANTIVIRAL ANTIBIOTIC

Satoshi Ōmura* and Akira Nakagawa

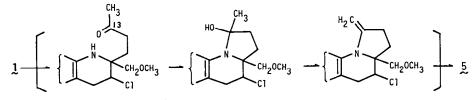

School of Pharmaceutical Sciences, Kitasato University and The Kitasato Institute Minato-ku, Tokyo 108, Japan

<u>Summary</u> The structure of virantmycin, a novel antiviral antibiotic, isolated from <u>Strepto-</u> myces, has been established by chemical and spectroscopic evidences.

Virantmycin (<u>1</u>), an antibiotic active against RNA and DNA viruses has been isolated from the fermentation broth of <u>Streptomyces nitrosporeus</u>¹). This communication deals with the structural elucidation of <u>1</u>. The antibiotic, <u>1</u>, mp. 59°C, $[\alpha]_D^{18} - 0.05^\circ$ (c 1, CHCl₃) gave the following spectral data: UV $\lambda_{max}^{\text{EtOH}}$ 306 nm (ε , 8100), IR $\nu_{max}^{\text{CC1}4}$ 3440 (NH), 3400-2400 (carboxy OH), 1687 (carboxy CO), 1603 cm⁻¹ (C=C). The mass spectrum of <u>1</u> showed M⁺ m/z 351 (C₁₉H₂₆NO₃Cl) and characteristic fragment peaks at m/z 316 (M⁺-Cl₁), 306 (M⁺-CH₂OCH₃), 270 (M⁺-CH₂OCH₃-HCl), 254 (M⁺-C₇H₁₃) and 83 (C₆H₁₁). The ¹H and ¹³C nmr spectra²) of <u>1</u> and the selective ¹³C(¹H) decoupling experiments exhibited the presence of three-substituted aromatic ring ($\delta_{\rm H}$ 6.56 d, J= 8.5 Hz, $\delta_{\rm H}$ 7.78 d, J=3.0 Hz and $\delta_{\rm H}$ 7.82, dd, J=8.5, 3.0 Hz), a carboxyl carbon ($\delta_{\rm C}$ 171.9), a methine ($\delta_{\rm H}$ 4.36 t, J=6.0 Hz; $\delta_{\rm C}$ 35.6) coupled with a methylene ($\delta_{\rm H}$ 3.40 dd, J=16.4, 6.0 Hz and $\delta_{\rm H}$ 3.58 s; $\delta_{\rm C}$ 74.1 for CH₂), two adjacent methylenes ($\delta_{\rm H}$ 1.6 m; $\delta_{\rm C}$ 27.8 and $\delta_{\rm H}$ 2.0 m; $\delta_{\rm C}$ 33.5), a quaternary carbon ($\delta_{\rm C}$ 58.0) and three methyls ($\delta_{\rm H}$ 1.60 s; $\delta_{\rm C}$ 20.6, 19.9 and 18.4),



which are attached to an isolated double bond (δ_{C} 124.8 and 126.5). Furthermore, two broad signals in the ¹H-nmr spectrum were assigned to be a carboxylic (δ 8.0) and NH (δ 4.7) protons, which disappeared by addition of D₂O. The resonance of the aromatic proton in higher magnetic field at δ 6.56 suggests the location of a NH group on the aromatic carbon at its α -position. The spectral evidences described above characterized the existence of the <u>p</u>-aminobenzoic acid skeleton as the chromophore and alkyl side chain moiety [I] in 1.



The substitution pattern on the isolated double bond [I] and the aromatic ring [II] were well supported by the application of ${}^{13}C{}^{1}H$ long-range decoupling (LSPD) technique to the methyl ester, 2 [mp. 118°C, $[\alpha]_D^{18}$ -0.10° (c 1, CHCl₃), $C_{20}H_{28}NO_3C1$ (M⁺ m/z 365), λ_{max}^{EtOH} 308 nm (ϵ , 9200), $\delta_{\rm H}$ 3.80 (COOCH₃), $\delta_{\rm C}$ 167.2 (ester CO)], which was obtained by treatment of 1 with CH₂N₂. LSPD of methylene signal (C-4, $\delta_{\rm H}$ 3.34 corresponding to $\delta_{\rm C}$ 33.4) collapsed C-9 aromatic carbon (δ_{C} 146.5, broad triplet) to a sharp triplet (${}^{3}J_{CH}=9.0$ Hz) and the C-5 aromatic carbon (δ_{C} 131.6, broad doublet) to a sharp double of doublet $({}^{1}J_{CH}=160.0 \text{ Hz}, {}^{3}J_{CH}=6.4 \text{ Hz})$, Irradiation of two aromatic protons ($\delta_{\rm H}$ 7.63 and 7.67) collapsed the C-5 and the C-9 aromatic signals to a broad singlet, and the C-7 (δ_{C} 129.6, ${}^{1}J_{CH}$ =163.0 Hz, ${}^{3}J_{CH}$ =7.1 Hz) to a singlet, respectively. These spectral data indicated that the C-4 methylene protons must be three bonds away from the C-5 and C-9 aromatic carbons. Another, two olefinic carbon signals at δ 124.8 and 126.5 collapses from broad singlet to sharp one upon irradiating the methyl and methylene protons at δ 1.60 and 1.5-2.0, simultaneously, confirming that two methylene groups should be located adjacent to a double bond substituted with three methyl groups. Taking into consideration two structural units [I] and [II] in addition to the location of a chlorine atom at the C-3 methine, we proposed the most suitable structure $\underline{1}$ for virantmycin.

The validity of the structure was also confirmed by its chemical reactions. The treatment of 1 with Zn dust in AcOH (or AcONa in AcOH) afforded the dechloro acetoxyl compound 3 [mp. 62°C, $[\alpha]_D^{18}$ -0.8° (c 1, CHCl₃), $C_{21}H_{29}NO_5$ (M⁺ m/z 375), δ_H 2.03 (3-acetoxyl methyl) and δ_H 5.23 (C-3 methine t, J=4.5 Hz)]. LiAlH₄ reduction of 1 afforded the compound 4 [mp. 68°C $[\alpha]_D^{18}$ +1.4° (c 1, CHCl₃), $C_{19}H_{27}NO_2$ (M⁺ m/z 301)] characterized with an azirizine ring formed between 1 and 3-positions (δ_H 2.80). Ozonolysis of 1 in CHCl₃ (-12°C) gave a 5-membered ring

lactam, $5 \text{ [mp. 188°C, C}_{15}H_{16}NO_4Cl, M^+ m/z 309, \lambda_{max}^{\text{EtOH}}$ 272.5 nm (ϵ , 9800), IR v_{max}^{CHCl} 3 1700 (CO), 1687 cm⁻¹ (COOH), δ_{C} 175.4 (lactam CO)]. Unusual formation of 5-membered ring lactam can be speculated to proceed <u>via</u> an enamine intermediate. The structure of 5 was evidenced by the ¹H-nmr spectral data (C-3, δ_{H} 4.20 dd, J=3.5, 5.2 Hz, C-4, δ_{H} 3.18 and 3.25, C-17, δ_{H} 3.44 and 3.76 d, J=5.0 Hz) and the LSPD.

The ¹³C chemical shift assignment of compounds 1, 2, 4 and 5 by means of selective ${}^{13}C{}^{1}H$ decoupling and LSPD experiments is shown in Table 1.

Determination of the absolute configuration of the C-2 and C-3 in 1_{2} is now in progress by X-ray crystallography of 2.

Carbon No.	<u>]</u> (Mult.)*	2~	4 ∼	<u>5</u> **
-NH-			· · · · · · · · · · · · · · · · · · ·	
2	58.0 (s)	57.9	49.8	66.6
2 3 4 5 6 7 8 9	56.2 (d)	56.4 33.4 ^b	50.1	61.2
4	33.5 (t)	33.4 ^D	30.2	35.8
5	132.4 (d)	131.6	122.6	131.3
6	117.7 (s)	118.6	138.0	126.8
7	130.4 (d)	129.6	126.2	129.3
8	113.5 (d)	113.5	120.7	119.8
9	147.2 (s)	146.5	150.1	125.5
10	116.0 (s)	115.9	139.5	139.3
11	33.5 (t)	33.6 ^b	30.2	28.4
12	27.8 (t)	27.8	33.9	32.4
13	124.8 (s)	124.6	124.2	175.4
14	126.5 (s)	126.5	127.1	
15	$18.8 (q)^{a}$	19.9 ^a	20.0 ^a	
16	171.9 (s)	167.2	64.5	167.9
17	74.1 (t)	73.9	66.4	72.3
17-0CH ₂	59.4 (q)	73.9	58 8	60.3
18 ³	18 4 (n)	73.9 18.4ª	18.3 ^a 20.6 ^a	
19	20.6 $(q)^{a}$	20.6 ^a	20.6 ^ª	
OCH3		51.5		

Table 1. ^{13}C Chemical shifts of compounds 1, 2, 4 and 5

*Multiplicity; s=singlet, d=doublet, t=triplet, q=quartet. **, Compound, 5 was measured in DMSO-d $_6$. ab; These assignments within any vertical column may be reversed.

<u>Acknowledgements</u> The authors are indebted to Miss K. Özeki for excellent technical assist ance and Drs. K. Miyano and A. Hatano for useful discussions.

References and Notes

- S. Ōmura, A. Nakagawa, H. Hashimoto, R. Ōiwa, Y. Iwai, A. Hirano, N. Shibukawa and
 Y. Kojima. J. Antibiotics <u>33(11)</u>, 1395 (1980).
- 2) 1 H and 13 C-nmr spectra were measured on JNM-PS-100 and JNM-PFT-100 spectrometers, respectively, with CDCl₃ as solvent and TMS as internal standard.

(Received in Japan 26 February 1981)